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Abstract

In this paper we present polynomial-time algorithms that
translate First-Order Logic (FOL) theories to smaller propo-
sitional encodings than achievable before in polynomial time.
For example, we can sometimes reduce the number of propo-
sitions toO(|P | + |C|), orO(|P |k · log |P |), for |P | predi-
cates of arityk and|C| constant symbols. The guarantee de-
pends on availability of some graphical structure in the FOL
representation. Our algorithms accept all FOL theories, and
preserve soundness and completeness (sometimes requiring
the Domain Closure Assumption). Our experiments show
significant speedup in inference with a SAT solver on real-
world problems. Our results address a common approach
that translates inference and decision problems that originate
in FOL into propositional logic, later applying efficient SAT
solvers. Standard translation techniques result in very large
propositional encodings (O(|P ||C|k) for predicates of arity
k) that are often infeasible to solve. Our approach scales up
inference for many objects, and has potential applicationsin
planning, probabilistic reasoning, and formal verification.

1 Introduction
A propositionalizationof a theory in First-Order Logic
(FOL) is a set of propositional sentences that is satisfiable
iff the original theory is satisfiable. We cannot translate ar-
bitrary FOL theories to propositional logic because FOL is
only semi-decidable. However, when possible, it is often ad-
vantageous to do so because we can use optimized, efficient
SAT solvers to solve the resulting SAT problem. Proposi-
tionalization is used frequently in Planning (Kautz and Sel-
man 1996), Relational Data Mining (Krogelet al. 2003),
and Formal Verification (Kropf 1999).

Current propositional encodings (naive prop.) are based
on (Gilmore 1960). They create a propositional symbol for
every ground atomic formula, yielding a representation with
O(|P ||C|k) propositional variables, for|P | predicates of
maximum arityk and|C| constants symbols. The intuition
is that any element in our universe may influence our sys-
tem, so we must check all the combinations. This results in
prohibitively large propositional encodings even for moder-
ate applications. Other propositional encodings follow from
decidability results for classes of FOL theories (Börgeret al.
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1996), and do not assume finite domains, but they always re-
sult in representations ofsuper-exponentialsize in |P | and
|C|.

In this paper we present a novel, systematic approach to
translating FOL to propositional logic. Many times we as-
sume the Domain Closure Assumption (DCA; The domain
is finite and of known cardinality), but for some classes of
FOL theories we do not need to assume it. Our approach
leverages structure in the FOL formulation to provide sig-
nificantly more compact propositional encodings.

Our algorithm generates propositional encodings of FOL
as follows. It starts by using the DCA to reduce the FOL
theory into one of two classes: (a) monadic FOL (MFOL),
in which only arity 1 predicates (and constants) are al-
lowed; and (b) exists-forall class (EAFOL) (aka theBernays-
Scḧoenfinkel-Ramseyclass (see (B̈orger et al. 1996))), in
which existential quantifiers occur before universal ones (all
arity is allowed for predicates, with equality, but no func-
tions). Then, it groups axiom sets into a tree of parti-
tions following the approach of (Amir and McIlraith 2005;
Amir 2001). Then, it translates each partition separately,
using only a restricted set of constants that depends on the
structure of the partitioning. Finally, it combines the trans-
lated parts into a single propositional theory.

We can leverage the structure of the FOL formulation
to reduce the number of propositions fromO(|P ||C|k) to
O(|P |k · ck · p · log |P |) when each partition includes at
most p predicates of arityk and at mostc constant sym-
bols. Under different conditions we get a different term:
O(|P |+ |C|)(3p +pc), which can be as low asO(|P |+ |C|)
propositions. These results are significant because they lead
to a uniform speed-up in the resulting SAT problem. For
example, in different experiments we reduced the number
of propositions from1, 000, 000 to 20, 000, allowing us to
solve (in under 10 minutes) problems that are infeasible oth-
erwise.

The rest of the paper is organized as follows: Section 2
gives some preliminary definitions. Section 3 presents an
overview of our methods. In Sections 4 and 5, which form
the core of our work, we describe the algorithms that use
partitioning-based methods to create efficient propositional
encodings. Section 6 discusses our experimental results. We
omit proofs of our theorems in this paper, for lack of space.



2 Preliminaries
We assume familiarity with the standard definitions of First
Order Logic. Also, recall that formulaF is in Prenexform if
all of its quantifiers appear before all of its literals, in which
caseMatrix(F ) denotesF without its quantifiers.

A logical theory is a set of formulae. For logical theory
τ , L(τ ) is its signature andL(τ ) is its language.Lpred(τ )
andLconst(τ ) are the set of predicate symbols and constant
symbols respectively ofτ . In the rest of the paper we restrict
our attention to languages with no function symbols.

A formula in prenex formτ = Q.M , is in themonadic
class if the arity of all its predicates is exactly one. It is
in the EAFOL classif Q ∈ ∃∗∀∗(this is usually called the
Bernays-Scḧoenfinkel-Ramseyclass in Mathematical Logic
and is known to be decidable (Börgeret al. 1996)).

We use the convention thatP, Q, R represent predicates,
a, b, c constants in a logical theory andx, y, z are variables.

3 Overview
3.1 Motivating Example
In this section we will describe the intuition behind our work
with the help of a toy example.

Consider the well-known Pigeon-principle problem. It is
typical to solve it by brute force: for example by creating a
boolean formula withO(n2) variables and checking for its
satisfiability. In fact, looking at Figure 1(a), it does not seem
that there is any kind of structure to exploit.

We will show however, that there is a simple reformula-
tion of this problem in FOL which leads to a readily decom-
posable theory. Consider Figure 1(b). We have partitioned
the theory into a tree and introduced the predicatesh+

1 , h+
2

andh+
3 where for exampleh+

2 (p) means that pigeonp is not
placed in any holei s.t. hi appears in the subtree rooted at
h+

2 (i.e. p is not inh1 or h2). Then for example we have the
following axiom (which appears in the root partition):

∀p[h+
1 (p) ⇔ (h+

2 (p)∧h+
3 (p))]

And to exclude each pigeon from being in more than one
hole we have axioms like the following:

∀p[h+
2 (p)∨h+

3 (p)]

Similar axioms are placed in each interior node of the
tree.To ensure that no two pigeons share a hole, in each leaf
partition we assert:

∀p∀q[hi(p)∧hi(q) ⇔ (p = q)]

Finally, in the root partition we put the following con-
straint to check if there is a satisfying assignment:

∀p[¬h+
1 (p)]

The structure that emerges from this transformation can
be used to create a propositional encoding that is more com-
pact by a factor of n

log n
. We will show in this paper that it

is only necessary to create a propositional variable for ev-
ery predicate and every constant that appears in the subtree
of the partition in which the predicate appears. So, in this

simple example, whereas the brute-force encoding had 16
propositional variables, the new encoding has 12.
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Figure 1: A naive pigeonhole encoding and its reformulation

3.2 Our Algorithm
This section presents a high-level view of the main contribu-
tion of this paper. Figure 2 presents the top-level of our al-
gorithm,Compact-Prop. It takes a theory, partitions it into a
tree of of sub-theories, encodes each of the parts in proposi-
tional logic separately, and returns the union of the resulting
propositional theories.

Definition 1 (Tree Decomposition). A tree decomposition
is a tree of partitions{Ai}i≤n such that if a symbol appears
in Ai, Aj then it appears on the tree path between them.

Theorem 1 (Correctness and Complexity).Let A be a
FOL theory. Procedure Compact-Prop(A,True) (Figure 2)
returns propositional theoryProp that is satisfiable if and
only if A has a model. Compact-Prop(A,False) returns
propositional theoryProp that is satisfiable ifA has a
model. Either option takes timeO(|Prop|) plus the time
for the chosen implementation oftreeDecomp(A).

Theorem 2 (Output Size). Let A be a FOL theory with
|P | predicates and|C| constants. If〈T, {Ai}i≤m〉 is a tree
decomposition ofA with degreed and at mostp predicates

Procedure Compact-Prop(FOL theoryA, booleanM )

1. LetA′ ← Reduce-FOL(Prenex(A), Const(A),M).
2. PartitionA′ into a treeT of partitions: Let〈T, {Ai}i≤m〉 be

the returned value fromtreeDecomp(A′).
3. For everyi ≤ m, setPropi ← Part-Prop(Ai, T,M)
4. ReturnProp =

⋃
i≤m

Propi

Procedure Part-Prop(FOL partitionAi, TreeT , booleanM )

1. If M , then returnPart-Prop-MFOL(Ai) (see Section 5.1).
2. Otherwise, returnPart-Prop-EAFOL(Ai, T ) (see Section

5.2).

Figure 2: Our translation procedure to propositional logic.



and c constants in every partition, then Compact-Prop(A,
M ) returns
1. O((|P | + |C|) · (3p + pc)), if M = TRUE.
2. O(|P |k ·ck ·p·logd |P |), otherwise, for arity-k predicates.

The intuition behind Compact-Prop is that under some
conditions one may limit predicate instantiations to only
some constants. Such conditions hold for theories in MFOL
and EAFOL that are partitioned in a tree decomposition. In
addition, when we are given an arbitrary FOL theory, we
make the DCA (if possible), convert the theory to EAFOL
or MFOL, and apply the propositional conversion to this new
theory. Sections 4.1 and 4.2 describe these cases in detail.
Section 5.3 describes the partitioning process and the gen-
eral conversion of FOL to EAFOL and MFOL (assuming
DCA).

A sketch for the proof of the number of propositions (The-
orem 2) is as follows. If the tree has degreed and we have
an EAFOL theory, then levelh in the tree hasdh nodes (the
root is at level0). At every node of levelh we havedH−hc
constant symbols (there arec constants in each leaf of the
tree) that may be combined with every predicate (of arityk)
at that node. Thus, the total number of propositions for level
h is dh · p · d(H−h)·k · ck = dH · d(H−h)·(k−1) · ck · p ≤
|P | · p · d(H−h)·(k−1) · ck.

Thus, the total number of propositions overall is
O(

∑logd m

h=0 ·|P | · p · d(H−h)·(k−1) · ck) which is bounded
from above by toO(logd m · p · |P |k · ck) for k ≥ 1. That
bound becomesO(|P |k · ck · p logd |P |) becausem ≤ |P |.
The proof for MFOL is similar.

4 Propositionalizing Partitions
The naive prop. of an FOL theory is created by re-
placing ground atoms with the corresponding subscripted
proposition(e.gP (A) with PA), universally quantified
formulae with the conjunction of their instantiations
(∀x(P (x)∨Q(x)) with (PA∨QA)∧(PB∨QB) . . .) and ex-
istentially quantified formulae with the disjunction of their
instantiations (e.g∃xP (x, C) with P〈A,C〉∨P〈B,C〉 . . .).

This approach requires the Domain Closure Assumption
(DCA; every element in the universe is referenced by some
constant symbol) and (if the theory has equality) the Unique
Names Assumption (UNA; each constant symbol refers to a
unique element). It is neither sound nor complete without
them. The intuition is that there may be a modelM with
some element in its universeA such thatPM (A) is true and
thusM |= ∃xP (x), but there need not exist some constant
a in the theory such thatP (a) is true, unless the DCA holds.

Here we present principled approaches to prop. for
MFOL and EAFOL without making the DCA or the UNA.
These techniques will be used in the construction of the ef-
ficient partitioned propositional encodings of section 5.

4.1 Monadic Theories
We define afactor as a monadic FOL formula that is either
an atom or is of the form∃x(L1∧ . . .∧Ln) where eachLi is
a monadic literal with argumentx and each predicate occurs
at most once in someLi.

Definition 2. A monadic FOL formulaτ in prenex form is in
proposition-ready (PR) formif Matrix(τ ) is a conjunction
of disjunctions of factors.

Theorem 3. Every monadic FOL formula can be repre-
sented in a logically equivalent proposition-ready form.

Example 1. Let F = ∀y∃x(P (x)∧Q(y)). Then, the step-
by-step conversion ofF into PR form is shown below:

∀x∃y(P (x)∧Q(y)) ⇔ ∃y∀x(P (x)∧Q(y))

⇔ ∃y(∀xP (x)∧Q(y))

⇔ ∃y(¬∃x¬P (x)∧Q(y))

⇔ ¬∃x¬P (x)∧∃yQ(y)

Note that in the first step, we have used the fact that the
relative order of existential and universal quantifiers is ir-
relevant when all the predicates are monadic (Börgeret al.
1996).2

We now define the alphabet of our propositional encoding.
If L is the language of a monadic first order formulaτ then,

Prop(L) , {Pc | P ∈ Lpred(L), c ∈ Lconst(L)} ∪

{E〈[¬]P1,[¬]P2,...[¬]Pn〉 | P1 . . . Pn ∈ Lpred(L)}

Given a formulaτ in PR form, each factor appearing in it
can be replaced by the corresponding propositional symbol
in the above alphabet. The result of these substitutions is a
propositional formula we callP(τ ).

Definition 3. P : L(L) → L(Prop(L)) is defined as fol-
lows: If τ is in PR form,
1. If τ = P (a) thenP(τ ) , Pa

2. If τ = ∃x([¬]P1(x)∧ . . .∧[¬]Pn(x)) then P(τ ) ,

E〈[¬]P1,...,[¬]Pn〉

3. If τ = ¬τ ′ thenP(τ ) , ¬P(τ ′)

4. If τ = τ1 ∧ . . .∧τn, thenP(τ ) , P(τ1)∧ . . .∧P(τn)

5. If τ = τ1 ∨ . . .∨τn, thenP(τ ) , P(τ1) ∨ . . .∨P(τn)
OtherwiseProp(τ ) is undefined.

Now we define a set of axiomsE(P, C) that relates propo-
sitions of the formE〈P1...〉 with each other and those of the
formPa. LetP = {P1, P2, . . . Pn} be a set of monadic FOL
predicates andC be a set of constants. Then

E(P,C) ,
∧

c∈C,k≤n,

i1...ik∈P

([¬]Pi1c ∧ . . . [¬]Pik c
⇒ E〈[¬]Pi1

,...[¬]Pik
〉)

(1)
∧

∧

k≤n,l≤k

i1...ik∈P

E〈[¬]Pi1
...[¬]Pik

〉 ⇒ E〈[¬]Pi1
...[¬]Pil

〉∧E〈[¬]Pil+1
...[¬]Pik

〉

∧
∧

i1...ik∈P

E〈[¬]Pi1
...[¬]Pik−1

〉 ⇒ E〈[¬]Pi1
...Pik

〉∨E〈[¬]Pi1
...¬Pik

〉

For example, ifPc(≡ P (c)) is true then the axiomPc ⇒
E〈P 〉 ensures thatE〈P 〉(≡ ∃xP (x)) is also true. Simi-
larly, if E〈P,Q〉 (≡ ∃x[P (x)∧Q(x)]) is true then the ax-
iom E〈P,Q〉 ⇒ E〈P 〉∧E〈Q〉 ensures thatE〈P 〉 and E〈Q〉



are true; and ifE〈P 〉 is true, then by the axiomE〈P 〉 ⇒
E〈P,Q〉∨E〈P,¬Q〉, E〈P,Q〉∨E〈P,¬Q〉 is true.

We will useE(τ ) to meanE(Lpred(τ ), Lconst(τ )).

Example 2. Let τ = (¬∃x(P (x) ∧ Q(x)) ∨ ∃y(R(y) ∧
¬S(y))) ∧ (∃y(¬S(y)) ∨ ∃y(R(y) ∧ ¬S(y))). The propo-
sitionalization ofτ is

P(τ ) = (¬E〈¬P,¬Q〉 ∨ E〈R,¬S〉) ∧ (E〈¬S〉 ∨ E〈R,¬S〉)

Assuming thatLconst(τ ) = {a}

E(τ ) = Pa ⇒ E〈P 〉 ∧ Pa∧¬Qa ⇒ E〈P,¬Q〉

∧ E〈P,¬Q〉 ⇒ E〈P 〉∧E〈¬Q〉 . . .2

Theorem 4 (Correctness).If τ is a monadic FOL theory,
τ is satisfiable iffP(τ )∧E(τ ) is satisfiable. The number of
propositional symbols inP(τ ) is at most|P | · |C| + 3|P |.

This method creates an exponential number of proposi-
tional variables. Section 5.1 discusses how to reduce this
number by a significant amount to make it usable.

4.2 The EAFOL Class
Let T be an FOL theory of the form∀x1 . . .∀xnM where
M is quantifier-free, and letC be a set of constants. Then
we define the operator⊗ as follows:

T ⊗ C =
∧

c1,...cn∈C

M [c1/x1, . . . , cn/xn] (2)

Theorem 5. Let τ = ∃y1 . . .∃ym∀x1 . . .∀xnM . Then
τ is satisfiable iff τ ′ = M [cy1

/y1, . . . cym
/ym] ⊗

Lconst(τ )
⋃
{cyi

|1 ≤ i ≤ m} is satisfiable. The number
of atoms inτ ′ is bounded by|P |(|C| + m)k.

Proof(sketch): If m = 0, the theorem follows directly
from the closure of universal sentences under substructures
(Börgeret al. 1996): If U is a substructure ofB andB is
a model of a universal theoryτ , then alsoU |= τ . There-
fore it suffices to check satisfiability for structures with|C|
elements.

Otherwise, since the existential quantifiers occurs before
the universal quantifiers, they can be replaced by skolem
constants to get a universal theory for which the above case
holds.2
Example 3. Let τ = ∃y∀x[P (a, x)∨Q(b, y)]. Sinceτ is in
the EA class, we can propositionalizeτ as

[P (a, x)∨Q(b, cy)] ⊗ {a, b, cy}

= (P (a, a)∨Q(b, cy))∧(P (a, b)∨Q(b, cy))

∧(P (a, cy)∨Q(b, cy))

where cy is the skolem constant fory and each atom is
treated as a propositional variable.2

5 Creating Compact Propositional Encoding
In this section we present the subroutines of our proposi-
tional encoding algorithm Compact-Prop (Figure 2). Our
method is informed by the principles ofPartition-based rea-
soning (Amir and McIlraith 2005), an efficient reasoning

PART-PROP-MFOL(A)
A is a partition containing only monadic predicates.

1. Return P(A) ∪ E(A) (see Definition 3 and Equation 1).

Figure 3: Compact Propositional encoding for Monadic the-
ories

framework for FOL where theories are decomposed into do-
mains connected in a tree structure and inference is per-
formed by consequence finding within the domains and
message-passingbetween domains.

It relies on a subroutinetreeDecompthat finds tree de-
compositions (e.g., (Amir 2001; Amir and McIlraith 2005)),
for which we omit the details. Implementations can be found
on the website of the authors. The success of our algorithm
relies on the existence ofgraphical structurein the problem
instance. However, we do not require that the problem be
completely decomposable into sub-theories. Any degree of
decomposition in the FOL representation can be exploited to
yield a more compact SAT encoding.

The completeness and soundness of Partition-based rea-
soning crucially depends upon the following theorem from
(Craig 1957):

Theorem 6 (Craig’s Interpolation Theorem). If α andβ
are First-order formula s.t.α ⊢ β, then there is a formula
γ ∈ L(L(α) ∩ L(β)) such thatα ⊢ γ andγ ⊢ β.

This result ensures that if all messages from one partition
that are relevant to another are sent to it, then the inference
procedure is complete.

5.1 Partitioned Encoding for the Monadic Class
For the MFOL class, the propositionalization algorithm
(PART-PROP-MFOL in Figure 3) needs to propositional-
ize each predicate with only the constants in the partition
it occurs in. The reason is Craig’s Interpolation Theorem.
Consider a simple situation with two partitions. We can
prove UNSAT iff there is an interpolant (γ) in the intersec-
tion of the languages of the partitions such thatA1 |= γ and
A2∪γ |= FALSE. If indeed our theory is UNSAT, then we
have such aγ. Then, the propositional-ready form ofγ cor-
responds to a propositional sentence in the MFOL proposi-
tionalization of the previous section. Theorem 4 guarantees
that the propositionalization ofA1 indeed entails the propo-
sitionalization ofγ, and that the propositionalization ofA2

entails the negation of thatγ. Thus, we can conclude that the
union of the propositionalizations will be UNSAT. A similar
argument gives the other direction (SAT).

Theorem 7. Let A =
⋃

i≤n Ai be a partitioned monadic
theory with a tree decompositionG. ThenA is satisfiable
iff the output of Algorithm COMPACT-PROP(which calls
PART-PROP-MFOL) is satisfiable.

Depending on the treewidth of the partitioning (a measure
of how well it can be decomposed (Robertson and Seymour
1986)), the size of the propositional encoding is less than
that of Section 4.1 by an exponential factor. This is because:
(a) the number of predicates that occur in any given partition



PART-PROP-EAFOL(FOL partitionAi, TreeT )

1. SetCsubtree(i) the set of constants that appear in the subtree ofi
in T (with root at1).

2. returnAi ⊗ Csubtree(i) (see Equation (2)).

Figure 4: Compact propositional encoding of an EAFOL
partition.

Procedure Reduce-FOL(FOL theoryA, constantsC, booleanM )

1. If M andA in MFOL, returnA.
2. If ¬M andA in EAFOL, returnA.
3. If A is ∀xψ(x) (someψ in FOL with only free variablex),

then return
∧|C|

i=1 Reduce-FOL(ψ(ci), C,M).
4. Else, A is ∃xψ(x) (some ψ in FOL with only

free variable x), so return
∧|C|−1

i=1 (P x(ci) ⇒
(Reduce-FOL(ψ(ci), C,M) ∨ P x(ci+1))) ∧ P x(c1) ∧
(P x(c|C|) ⇒ Reduce-FOL(ψ(c|C|), C,M)). for a new
predicateP x.

Figure 5: Converting a FOL theory to EAFOL.

is a fraction of|P |, and thus the number of propositions of
the formE〈P1,...,Pk〉 is exponentially smaller. (b) Each pred-
icate does not have to be propositionalized with every con-
stant in the theory. Assuming that the number of constants in
the theory is much more than the number of predicates (usu-
ally the case in a real-world domain), the number of proposi-
tions is significantly less than even the naive prop.(theorem
2).

5.2 Partitioned Encoding for the EAFOL Class
Unlike the previous section, with EAFOL we cannot restrict
the propositionalization to within each partition. For ex-
ample, supposeP (c) and∀x[P (x) ⇒ Q(a)] are in differ-
ent partitions. Because we propositionalize these separately,
P (c) ⇒ Q(a) will not be in the propositional theory and
thusQ(a) cannot be deduced.

Unfortunately, this seems to preclude a completeness the-
orem ( similar to Theorem 7) for EAFOL. We could not find
an encoding (or proof of the current method) that allows
such a theorem, at the time of this submission. Thus, this
method (Figure 4) is only approximate, as far as we know.
Still, our experimental results (see Section 6) for the cur-
rent partitioned encoding of EAFOL show promise because
all satisfiability tests with the new encodings (see Table 1)
give correct answers (verified by comparing with the naive
encoding).

5.3 General FOL Theories with the DCA
The subroutineReduce-FOL(Figure 5) is important because
it supplies the necessary conversion that makes our method
applicable to all of FOL (assuming the DCA).

Traditionally, one converts a formula
Qx1...Qxnϕ(x1, ..., xn) to propositional logic using
DCA by removing quantifiers until we get a fully proposi-
tionalized formula. One removes quantifiers recursively as
follows:

• Replace ∃x1Qx2...Qxnϕ(x1, ..., xn) with∨
c1∈C Qx2...Qxnϕ(c1, ..., xn).

• Replace ∀x1Qx2...Qxnϕ(x1, ..., xn) with∧
c1∈C Qx2...Qxnϕ(c1, ..., xn).

The traditional method needs to removen quantifiers, and
gets a formula of sizeO(nn ∗ |ϕ|) with O(|P | · |C|k) for
predicates of arityk

Our approach differs from the traditional one in two ways.
First, we stop the process when we reach an EAFOL or
MFOL formula (avoiding some of the exponential blowup in
size). Secondly, we break disjunctions into smaller clauses
that are easier to decompose later (each new disjunction has
at most2 constant symbols, and the order of the constant
symbols is that alwaysci appears either withci+1 or ci−1).
We get a total number of at mostq new predicates (we re-
movedq quantifiers using our replacement above).

6 Experimental Results
Hardware emulators for verifying VLSI circuits are often
designed by using a number of interconnected field pro-
grammable gate arrays(FPGA’s). Signals between the chips
must be routed using a limited number of crossbar switches
and pins on each chips. In theBoard-Level Routing Problem
(Songet al. 2002), givenP chips, each havingK groups of
I/O ports, and each group havingN ports, we must deter-
mine if for a set of routing constraintsS = {n1, . . . , nN},
wherent = (i, j), i 6= j, i, j ∈ {1 . . . P}, there exists an
assignment from S to the I/O ports of theP chips s.t. for
eachnt = (i, j), type(i) = type(j).

(Songet al. 2002) solve the BLRP by encoding it directly
into a SAT formula. Using our EAFOL propositionaliza-
tion algorithm we obtained much more compact encodings.
These translate to a uniform improvement in the running
time of the SAT solvers.

Our algorithm preformed better on all the problem in-
stances reported in (Songet al. 2002). The results are
shown in Figure 1, where both the number of propositional
variables obtained and the running time on the SAT solver
are plotted against the parameters of the problem instance.
On one particular instance(not plotted in the figure), where
(Songet al. 2002) needed 1687 variables and took 1687 sec.
to solve, our algorithm used 695 variables and took 413 sec.

For the second example, we took a machine schedul-
ing problem described in (Ramchandran and Amir 2004).
Briefly, there are items in an assembly line operated upon
by a number of machines in sequence. Each item pos-
sesses a state manipulated by the machines. Items must
be scheduled for work on particular machines at particular
time steps so that they go through the correct sequence of
states needed for assembly. The problem is given a set of
constraints(randomly generated in our experiments) on the
items and the machines, to determine whether there exists a
schedule such that all items can be assembled by the dead-
line. This problem is in the MFOL class.

Table 2 shows the results. The MFOL algorithm outper-
formed the naive encoding by a large margin.1

1It would have been useful to compare the results of our meth-
ods with those of (Dixonet al. 2004). Unfortunately we were not



Instance #Vars #Vars ZChaff Zchaff Satzoo Satzoo Berkmin Berkmin Relsat Relsat
(P,K,M,N) (naive) (part.) (naive) (part.) (naive) (part.) (naive) (part.) (naive) (part.)
20-5-2-07 245 224 0.68 1.93 1.8 1.6 0.10 0.46 0.7 0.5
20-5-3-14 275 184 85.88 64.82 126.3 79.4 64.12 38.4 115.3 76.6
20-5-3-11 300 232 100.71 73.23 142.7 96.1 83.56 47.89 123.5 81.4
20-7-3-8 735 420 207.79 113.57 289.8 147.8 162.33 77.67 266.8 141.8
50-5-3-8 855 287 109.56 39.92 137.0 51.2 67.92 27.1 152.3 53.7
50-7-3-8 1687 695 1453.00 413.09 1623.9 472.4 1066.02 314.12 1771.1 489.9
100-5-3-8 1720 633 112.62 34.64 166.6 49.5 69.75 22.17 168.4 59.3
200-5-3-8 3585 1014 91.11 29.37 128.9 45.7 84.11 25.99 117.5 34.2

Table 1: Board Level Routing Problem

Instance #Vars #Vars ZChaff Zchaff Satzoo Satzoo Berkmin Berkmin Relsat Relsat
(#states,#steps) (naive) (part.) (naive) (part.) (naive) (part.) (naive) (part.) (naive) (part.)

(150,100) 45000 41776 15.1 12.3 5 7 13 18 24 18
(250,100) 90000 76524 79.4 65.2 129 75 87 68 134 88
(350,100) 135000 58419 211.7 78.4 287 91 247 85 331 109
(150,200) 75000 38697 74.2 56.3 89 60 63 42 122 78
(250,200) 150000 93442 696.8 244.6 722 266 744 277 872 287
(350,200) 225000 137868 1562.1 359.6 1487 348 1612 381 2216 511
(150,300) 105000 68645 402.5 111.2 462 126 376 99 655 194
(250,300) 210000 115581 1997.8 344.0 1844 330 1833 313 - 577
(350,300) 315000 162517 - 583.2 - 537 - 560 - 829

Table 2: The Machine Scheduling Problem

7 Conclusions and Future Work
In this paper we presented a principled approach to the prob-
lem of SAT-reducing an FOL theory. Our algorithms work
in polynomial time, and produce encodings that lead to sig-
nificant improvement in speed of inference.

The motivation for our work is the evidence that First Or-
der representations hold structure that is lost in the transla-
tion to propositional logic. Rediscovering this structurein
the propositional level seems equivalent to checking graph
isomorphism (an NP-hard problem), so it is unlikely that
SAT solvers can rediscover and use this structure at the
propositional level.

We view our work in the context of a body of literature
that recognizes that real world problems are structured. In
particular, our techniques takes advantage of the local struc-
ture of theories in order to do efficient reasoning. For a com-
plementary approach that exploits the symmetry of problem
instances rather than their locality see (Dixonet al. 2004).

The success of these methods suggests that the scope of
propositional encoding techniques can be expanded beyond
its current usage. We believe that the first applications could
be in Planning, where there is already an extensive literature
on the use of propositionalization e.g. (Kautz and Selman
1996) and Probabilistic Relational inference (Poole 2003).
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